geoclide.quadrics module#

class geoclide.quadrics.Disk(radius, inner_radius=0.0, phi_max=360.0, z_height=0.0, oTw=None, wTo=None)#

Bases: Shape

Creation of the class Disk

Parameters:
radiusfloat

The disk radius

inner_radiusfloat, optional

The inner radius (case of annulus)

phi_maxfloat, optional

The maximum phi value in degrees of the disk/annulus, where phi is between 0 and 360°

z_heightfloat, optional

the disk height along the z axis

oTwTransform, optional

From object to world space or the transformation applied to the spheroid

wToTransform, optional

From world to object space or the in inverse transformation applied to the spheroid

Methods

area()

compute the disk / annulus area

intersect(r[, ds_output])

Test if a ray/set of rays intersects the disk

is_intersection(r)

Test if a ray/set of rays intersects the disk

is_intersection_t(r)

Test if a ray/set of rays intersects the disk

plot(**kwargs)

Plot the disk

to_trianglemesh([reso])

Convert the disk to a triangle mesh

Notes

Even if z_height is given, the origin for rotation transformation do not change. For exemple: z_height=5 then we apply a rotation of 90 degrees around the y axis, the disk we be rotated from (0.,0.,0.), meaning the disk we be moved from position (0.,0.,5.) to (5.,0.,0.).

area()#

compute the disk / annulus area

Warning

the scale transformation is not considered for the area calculation!

intersect(r, ds_output=True)#

Test if a ray/set of rays intersects the disk

Parameters:
rRay

The ray(s) to use for the intersection test(s)

ds_outputBool, optional

If True the output is a dataset, else -> a tuple with intersection information variables

Returns:
outxr.Dataset | tuple

Look-up table with the intersection information if ds_output is True, else returns a tuple. The tuple is ready to be an input for the function geoclide.shapes.get_intersect_dataset

Examples

>>> import geoclide as gc
>>> r1 = gc.Ray(gc.Point(1.2,0.,10.), gc.Vector(0.,0.,-1.))
>>> annulus = gc.Disk(radius=1.5, inner_radius=0.8)
>>> annulus.intersect(r1) # hit point is between the inner radius and radius
<xarray.Dataset> Size: 209B
Dimensions:          (xyz: 3)
Coordinates:
* xyz              (xyz) int64 24B 0 1 2
Data variables:
    o                (xyz) float64 24B 1.2 0.0 10.0
    d                (xyz) float64 24B 0.0 0.0 -1.0
    mint             int64 8B 0
    maxt             float64 8B inf
    is_intersection  bool 1B True
    thit             float64 8B 10.0
    u                float64 8B 0.0
    v                float64 8B 0.4286
    phit             (xyz) float64 24B 1.2 0.0 0.0
    nhit             (xyz) float64 24B 0.0 0.0 1.0
    dpdu             (xyz) float64 24B 0.0 7.54 0.0
    dpdv             (xyz) float64 24B -0.7 -0.0 -0.0
is_intersection(r)#

Test if a ray/set of rays intersects the disk

Parameters:
rRay

The ray(s) to use for the intersection test

Returns:
is_intersectionbool | 1-D ndarray

If there is an intersection -> True, else False

Examples

>>> import geoclide as gc
>>> r1 = gc.Ray(gc.Point(1.2,0.,10.), gc.Vector(0.,0.,-1.))
>>> r2 = gc.Ray(gc.Point(0.2,0.,10.), gc.Vector(0.,0.,-1.))
>>> r3 = gc.Ray(gc.Point(1.6,0.,10.), gc.Vector(0.,0.,-1.))
>>> annulus = gc.Disk(radius=1.5, inner_radius=0.8)
>>> annulus.is_intersection(r1) # hit point is between the inner radius and radius
True
>>> annulus.is_intersection(r2) # the ray passes through the annulus hole, no intersection
False
>>> annulus.is_intersection(r3) # the ray passes outside, no intersection
False
is_intersection_t(r)#

Test if a ray/set of rays intersects the disk

Parameters:
rRay

The ray(s) to use for the intersection test

Returns:
thitfloat | 1-D ndarray

The t ray variable(s) for its first intersection at the shape surface

is_intersectionbool | 1-D ndarray

If there is an intersection -> True, else False

Examples

>>> import geoclide as gc
>>> r1 = gc.Ray(gc.Point(1.2,0.,10.), gc.Vector(0.,0.,-1.))
>>> r2 = gc.Ray(gc.Point(0.2,0.,10.), gc.Vector(0.,0.,-1.))
>>> r3 = gc.Ray(gc.Point(1.6,0.,10.), gc.Vector(0.,0.,-1.))
>>> annulus = gc.Disk(radius=1.5, inner_radius=0.8)
>>> annulus.is_intersection_t(r1) # hit point is between the inner radius and radius
(10.0, True)
>>> annulus.is_intersection_t(r2) # the ray passes through the annulus hole, no intersection
(None, False)
>>> annulus.is_intersection_t(r3) # the ray passes outside, no intersection
(None, False)
plot(**kwargs)#

Plot the disk

  • The disk is first converted to a triangle mesh then the TriangleMesh plot method is used

Parameters:
**kwargs

The keyword arguments are passed on to the TriangleMesh plot method

to_trianglemesh(reso=None)#

Convert the disk to a triangle mesh

Parameters:
resoint, optional

The number of lines around the polar phi angle, minimum accepted value is 3

Returns:
meshTriangleMesh

The disk converted to a triangle mesh

class geoclide.quadrics.Sphere(radius, z_min=None, z_max=None, phi_max=360.0, oTw=None, wTo=None)#

Bases: Shape

Creation of the class Sphere

  • without transformation the sphere is centered at the origin

  • z0, z1 and phi_max are needed parameters for the creation of any partial sphere

Parameters:
radiusfloat

The radius of the sphere

z_minfloat, optional

The minimum z value of the sphere where z0 is between [-radius, 0]

z_maxfloat, optional

The maximum z value of the sphere where z1 is between [0, radius]

phi_maxfloat, optional

The maximum phi value in degrees of the sphere, where phi is between 0 and 360°

oTwTransform, optional

From object to world space or the transformation applied to the sphere

wToTransform, optional

From world to object space or the in inverse transformation applied to the sphere

Methods

area()

compute the sphere / partial sphere area

intersect(r[, ds_output])

Test if a ray/set of rays intersects the sphere/partial sphere

is_intersection(r)

Test if a ray/set of rays intersects the sphere / partial sphere

is_intersection_t(r)

Test if a ray/set of rays intersects the sphere/partial sphere

plot(**kwargs)

Plot the sphere

to_trianglemesh([reso_theta, reso_phi])

Convert the sphere to a triangle mesh

area()#

compute the sphere / partial sphere area

Warning

the scale transformation is not considered for the area calculation!

intersect(r, ds_output=True)#

Test if a ray/set of rays intersects the sphere/partial sphere

Parameters:
rRay

The ray(s) to use for the intersection test(s)

ds_outputBool, optional

If True the output is a dataset, else -> a tuple with intersection information variables

Returns:
outxr.Dataset | tuple

Look-up table with the intersection information if ds_output is True, else returns a tuple. The tuple is ready to be an input for the function geoclide.shapes.get_intersect_dataset

Examples

>>> import geoclide as gc
>>> sph1 = gc.Sphere(radius=1.) # sphere of radius 1
>>> sph2 = gc.Sphere(radius=1., z_max=0.5) # partial sphere where portion above z=0.5 is removed
>>> r = gc.Ray(o=gc.Point(-2., 0., 0.8), d=gc.Vector(1.,0.,0.))
>>> sph1.intersect(r)
<xarray.Dataset> Size: 209B
Dimensions:          (xyz: 3)
Coordinates:
* xyz              (xyz) int64 24B 0 1 2
Data variables:
    o                (xyz) float64 24B -2.0 0.0 0.8
    d                (xyz) float64 24B 1.0 0.0 0.0
    mint             int64 8B 0
    maxt             float64 8B inf
    is_intersection  bool 1B True
    thit             float64 8B 1.4
    u                float64 8B 0.5
    v                float64 8B 0.7952
    phit             (xyz) float64 24B -0.6 0.0 0.8
    nhit             (xyz) float64 24B -0.6 0.0 0.8
    dpdu             (xyz) float64 24B 0.0 -3.77 0.0
    dpdv             (xyz) float64 24B 2.513 0.0 1.885
>>> ds = sph1.intersect(r)
>>> ds['phit'].values # the intersection point
array([-0.6,  0. ,  0.8])
>>> ds['nhit'].values # The surface normal at the intersection point
array([-0.6,  0. ,  0.8])
>>> sph2.intersect(r) # here no intersection since the sphere part above z=0.5 is removed
<xarray.Dataset> Size: 209B
Dimensions:          (xyz: 3)
Coordinates:
* xyz              (xyz) int64 24B 0 1 2
Data variables:
    o                (xyz) float64 24B -2.0 0.0 0.8
    d                (xyz) float64 24B 1.0 0.0 0.0
    mint             int64 8B 0
    maxt             float64 8B inf
    is_intersection  bool 1B False
    thit             object 8B None
    u                object 8B None
    v                object 8B None
    phit             (xyz) float64 24B nan nan nan
    nhit             (xyz) float64 24B nan nan nan
    dpdu             (xyz) float64 24B nan nan nan
    dpdv             (xyz) float64 24B nan nan nan
is_intersection(r)#

Test if a ray/set of rays intersects the sphere / partial sphere

Parameters:
rRay

The ray(s) to use for the intersection test

Returns:
outbool | 1-D ndarray

If there is an intersection -> True, else False

Examples

>>> import geoclide as gc
>>> sph1 = gc.Sphere(radius=1.) # sphere of radius 1
>>> sph2 = gc.Sphere(radius=1., z_max=0.5) # partial sphere where portion above z=0.5 is removed
>>> r = gc.Ray(o=gc.Point(-2., 0., 0.8), d=gc.Vector(1.,0.,0.))
>>> sph1.is_intersection(r)
True
>>> sph2.is_intersection(r) # here no intersection since the sphere part above z=0.5 is removed
False
is_intersection_t(r)#

Test if a ray/set of rays intersects the sphere/partial sphere

Parameters:
rRay

The ray(s) to use for the intersection test

Returns:
thitfloat | 1-D ndarray

The t ray variable(s) for its first intersection at the shape surface

is_intersectionbool | 1-D ndarray

If there is an intersection -> True, else False

Examples

>>> import geoclide as gc
>>> sph1 = gc.Sphere(radius=1.) # sphere of radius 1
>>> sph2 = gc.Sphere(radius=1., z_max=0.5) # partial sphere where portion above z=0.5 is removed
>>> r = gc.Ray(o=gc.Point(-2., 0., 0.8), d=gc.Vector(1.,0.,0.))
>>> sph1.is_intersection_t(r)
(1.4000000000000004, True)
>>> sph2.is_intersection(r) # here no intersection since the sphere part above z=0.5 is removed
False
plot(**kwargs)#

Plot the sphere

  • The sphere is first converted to a triangle mesh then the TriangleMesh plot method is used

Parameters:
**kwargs

The keyword arguments are passed on to the TriangleMesh plot method

to_trianglemesh(reso_theta=None, reso_phi=None)#

Convert the sphere to a triangle mesh

Parameters:
reso_thetaint, optional

The number of lines around the polar theta angle, minimum accepted value is 3

reso_phiint, optional

The number of lines around the azimuth phi angle, minimum accepted value is 3

Returns:
meshTriangleMesh

The sphere converted to a triangle mesh

class geoclide.quadrics.Spheroid(radius_xy, radius_z, oTw=None, wTo=None)#

Bases: Shape

Creation of the class Spheroid

  • without transformation the spheroid is centered at the origin

  • spheroid equation: x/(alpha**2) + y/(alpha**2) + z/(gamma**2) = 1, where alpha = radius_xy and gamma = radius_z

  • prolate -> radius_z > radius_xy

  • oblate -> radius_z < radius_xy

Parameters:
radius_xyfloat

The equatorial radius of the spheroid

radius_zfloat

The pole radius of the spheroid (distance from center to pole along z axis)

oTwTransform, optional

From object to world space or the transformation applied to the spheroid

wToTransform, optional

From world to object space or the in inverse transformation applied to the spheroid

Methods

area()

compute the spheroid area

intersect(r[, ds_output])

Test if a ray/set of rays intersects the spheroid

is_intersection(r)

Test if a ray/set of rays intersects the spheroid

is_intersection_t(r)

Test if a ray/set of rays intersects the spheroid

plot(**kwargs)

Plot the spheroid

to_trianglemesh([reso_theta, reso_phi])

Convert the spheroid to a triangle mesh

area()#

compute the spheroid area

Warning

the scale transformation is not considered for the area calculation!

intersect(r, ds_output=True)#

Test if a ray/set of rays intersects the spheroid

Parameters:
rRay

The ray(s) to use for the intersection test(s)

ds_outputBool, optional

If True the output is a dataset, else -> a tuple with intersection information variables

Returns:
outxr.Dataset | tuple

Look-up table with the intersection information if ds_output is True, else returns a tuple. The tuple is ready to be an input for the function geoclide.shapes.get_intersect_dataset

Examples

>>> import geoclide as gc
>>> oblate = gc.Spheroid(radius_xy=3., radius_z=1.5)
>>> prolate = gc.Spheroid(radius_xy=1.5, radius_z=3.)
>>> r1 = gc.Ray(o=gc.Point(2.5, 0., 10.), d=(gc.Vector(0., 0., -1.)))
>>> r2 = gc.Ray(o=gc.Point(10., 0., 2.5), d=(gc.Vector(-1., 0., 0.)))
>>> oblate.intersect(r1)
<xarray.Dataset> Size: 209B
Dimensions:          (xyz: 3)
Coordinates:
* xyz              (xyz) int64 24B 0 1 2
Data variables:
    o                (xyz) float64 24B 2.5 0.0 10.0
    d                (xyz) float64 24B 0.0 0.0 -1.0
    mint             int64 8B 0
    maxt             float64 8B inf
    is_intersection  bool 1B True
    thit             float64 8B 9.171
    u                float64 8B 0.0
    v                float64 8B 0.6864
    phit             (xyz) float64 24B 2.5 0.0 0.8292
    nhit             (xyz) float64 24B 0.6019 -0.0 0.7985
    dpdu             (xyz) float64 24B 0.0 15.71 0.0
    dpdv             (xyz) float64 24B -5.21 0.0 3.927
>>> prolate.intersect(r2)
<xarray.Dataset> Size: 209B
Dimensions:          (xyz: 3)
Coordinates:
* xyz              (xyz) int64 24B 0 1 2
Data variables:
    o                (xyz) float64 24B 10.0 0.0 2.5
    d                (xyz) float64 24B -1.0 0.0 0.0
    mint             int64 8B 0
    maxt             float64 8B inf
    is_intersection  bool 1B True
    thit             float64 8B 9.171
    u                float64 8B 0.0
    v                float64 8B 0.8136
    phit             (xyz) float64 24B 0.8292 0.0 2.5
    nhit             (xyz) float64 24B 0.7985 -0.0 0.6019
    dpdu             (xyz) float64 24B 0.0 5.21 0.0
    dpdv             (xyz) float64 24B -3.927 0.0 5.21
is_intersection(r)#

Test if a ray/set of rays intersects the spheroid

Parameters:
rRay

The ray(s) to use for the intersection test

Returns:
outbool | 1-D ndarray

If there is an intersection -> True, else False

Examples

>>> import geoclide as gc
>>> oblate = gc.Spheroid(radius_xy=3., radius_z=1.5)
>>> prolate = gc.Spheroid(radius_xy=1.5, radius_z=3.)
>>> r1 = gc.Ray(o=gc.Point(2.5, 0., 10.), d=(gc.Vector(0., 0., -1.)))
>>> r2 = gc.Ray(o=gc.Point(10., 0., 2.5), d=(gc.Vector(-1., 0., 0.)))
>>> oblate.is_intersection(r1)
True
>>> oblate.is_intersection(r2)
False
>>> prolate.is_intersection(r1)
False
>>> prolate.is_intersection(r2)
True
is_intersection_t(r)#

Test if a ray/set of rays intersects the spheroid

Parameters:
rRay

The ray(s) to use for the intersection test

Returns:
thitfloat | 1-D ndarray

The t ray variable(s) for its first intersection at the shape surface

is_intersectionbool | 1-D ndarray

If there is an intersection -> True, else False

Examples

>>> import geoclide as gc
>>> oblate = gc.Spheroid(radius_xy=3., radius_z=1.5)
>>> prolate = gc.Spheroid(radius_xy=1.5, radius_z=3.)
>>> r1 = gc.Ray(o=gc.Point(2.5, 0., 10.), d=(gc.Vector(0., 0., -1.)))
>>> r2 = gc.Ray(o=gc.Point(10., 0., 2.5), d=(gc.Vector(-1., 0., 0.)))
>>> oblate.is_intersection_t(r1)
(9.170843802411135, True)
>>> oblate.is_intersection_t(r2)
(None, False)
>>> prolate.is_intersection_t(r1)
(None, False)
>>> prolate.is_intersection_t(r2)
(9.170843802411135, True)
plot(**kwargs)#

Plot the spheroid

  • The spheroid is first converted to a triangle mesh then the TriangleMesh plot method is used

Parameters:
**kwargs

The keyword arguments are passed on to the TriangleMesh plot method

to_trianglemesh(reso_theta=None, reso_phi=None)#

Convert the spheroid to a triangle mesh

Parameters:
reso_thetaint, optional

The number of lines around the polar theta angle, minimum accepted value is 3

reso_phiint, optional

The number of lines around the azimuth phi angle, minimum accepted value is 3

Returns:
meshTriangleMesh

The spheroid converted to a triangle mesh