geoclide.trianglemesh module#

class geoclide.trianglemesh.Triangle(p0=None, p1=None, p2=None, oTw=None, wTo=None, p0t=None, p1t=None, p2t=None)#

Bases: Shape

Creation of the class Triangle

Parameters:
p0Point

The first point(s) of the triangle(s)

p1Point

The second point(s) of the triangle(s)

p2Point

The the third point(s) of the triangle(s)

oTwTransform, optional

From object to world space or the transformation applied to the triangle

wToTransform, optional

From world to object space or the in inverse transformation applied to the triangle

p0tPoint, optional

If given circumvent the automatically computed p0t (p0 after applying transformation)

p1tPoint, optional

If given circumvent the automatically computed p1t (p1 after applying transformation)

p2tPoint, optional

If given circumvent the automatically computed p2t (p2 after applying transformation)

Methods

area()

compute the area of the triangle

intersect(r[, method, diag_calc, ds_output])

Test if a ray/set of rays intersect with the triangle(s) and return intersection information

intersect_v2(r[, diag_calc, ds_output])

intersect_v3(r[, diag_calc, ds_output])

is_intersection(r[, method, diag_calc])

Test if a ray/set of rays intersect with the triangle(s)

is_intersection_t(r[, method, diag_calc])

Test if a ray/set of rays intersect with the triangle(s)

is_intersection_v2(r[, diag_calc])

is_intersection_v2_t(r[, diag_calc])

is_intersection_v3(r, diag_calc)

is_intersection_v3_t(r[, diag_calc])

area()#

compute the area of the triangle

Warning

the scale transformation is not considered for the area calculation!

intersect(r, method='v3', diag_calc=False, ds_output=True)#

Test if a ray/set of rays intersect with the triangle(s) and return intersection information

Parameters:
rRay

The ray(s) to use for the intersection test(s)

methodstr, optional

Tow choice -> ‘v2’ (use mainly pbrt v2 intersection test method) or ‘v3’ (pbrt v3)

diag_calcbool, optional

Perform diagonal calculations in case Triangle and Ray have ndarray point components, meaning the output is a 1-D array instead of a 2-D array where out[i] is calculated using r(i) and triangle(i). The same size for the Triangle and the Ray is required.

ds_outputBool, optional

If True the output is a dataset, else return a tuple with intersection information variables

Returns:
outxr.Dataset | tuple

Look-up table with the intersection information if ds_output is True, else return a tuple (ready to be an input for the function get_intersect_dataset in geoclide/shapes.py). Form of the tuple:

  • shape_namestr

    -> The shape class name

  • rRay

    -> The ray(s) used for the intersection test

  • tNone | float | 1-D ndarray | 2-D ndarray

    -> The t ray variable(s) for its first intersection at the shape surface

  • is_intersectionbool | 1-D ndarray | 2-D ndarray

    -> If there is an intersection return True, else False

  • uNone | float | 1-D ndarray | 2-D ndarray

    -> The u coordinate(s) of the parametric representation

  • vNone | float | 1-D ndarray | 2-D ndarray

    -> The u coordinate(s) of the parametric representation

  • dpduNone | 1-D ndarray | 2-D ndarray

    -> The surface partial derivative(s) of phit with respect to u

  • dpdvNone | 1-D ndarray | 2-D ndarray

    -> The surface partial derivative(s) of phit with respect to v

  • diag_calbool

    -> This indicates whether a diagonal calculation has been performed

Notes

By default the ‘v3’ method is used since there are more robustness tests. But the ‘v2’ method is at least twice faster than ‘v3’.

is_intersection(r, method='v3', diag_calc=False)#

Test if a ray/set of rays intersect with the triangle(s)

Parameters:
rRay

The ray(s) to use for the intersection test(s)

methodstr, optional

Tow choice -> ‘v2’ (use mainly pbrt v2 intersection test method) or ‘v3’ (pbrt v3)

diag_calcbool, optional

Perform diagonal calculations in case Triangle and Ray have ndarray point components, meaning the output is a 1-D array instead of a 2-D array where out[i] is calculated using r(i) and triangle(i). The same size for the Triangle and the Ray is required.

Returns:
outbool | 1-D ndarray | 2-D ndarray

If there is an intersection -> True, else False

is_intersection_t(r, method='v3', diag_calc=False)#

Test if a ray/set of rays intersect with the triangle(s)

Parameters:
rRay

The ray(s) to use for the intersection test(s)

methodstr, optional

Tow choice -> ‘v2’ (use mainly pbrt v2 intersection test method) or ‘v3’ (pbrt v3)

diag_calcbool, optional

Perform diagonal calculations in case Triangle and Ray have ndarray point components, meaning the output is a 1-D array instead of a 2-D array where out[i] is calculated using r(i) and triangle(i). The same size for the Triangle and the Ray is required.

Returns:
thitNone | float | 1-D ndarray | 2-D ndarray

The t ray variable(s) for its first intersection at the shape surface

is_intersectionbool | 1-D ndarray | 2-D ndarray

If there is an intersection -> True, else False

class geoclide.trianglemesh.TriangleMesh(vertices, faces, oTw=None, wTo=None)#

Bases: Shape

Creation of the class TriangleMesh

Parameters:
vertices2-D ndarray

The vertices xyz coordinates. It is a 2d ndarray of size (nvertices, 3) where the first element is the coordinate of first vertex and so on

faces2-D ndarray

The vertices indices of triangles, a 2d ndarray of shape (ntriangles, 3). The 3 first indices are the vertices (p0, p1 and p3) indices of the first triangle and so on

oTwTransform, optional

From object to world space or the transformation applied to the triangle mesh

wToTransform, optional

From world to object space or the in inverse transformation applied to the triangle mesh

Methods

apply_tf(t)

Apply transformation to the triangle mesh

area()

compute the area of the triangle mesh

intersect(r[, method, diag_calc, ds_output, ...])

Test if a ray/set of rays intersect with the triangle mesh and return intersection information

is_intersection(r[, method, diag_calc, use_loop])

Test if a ray/set of rays intersect with the triangle mesh

is_intersection_t(r[, method, diag_calc, ...])

Test if a ray/set of rays intersect with the triangle mesh

plot([source, savefig_name])

Plot the triangle mesh

to_dataset([name])

Create an xarray dataset where the triangle mesh information are stored

write(path, **kwargs)

Save the mesh

apply_tf(t)#

Apply transformation to the triangle mesh

Parameters:
tTranform

The transfomation matrix to apply

area()#

compute the area of the triangle mesh

Warning

the scale transformation is not considered for the area calculation!

intersect(r, method='v3', diag_calc=False, ds_output=True, use_loop=False)#

Test if a ray/set of rays intersect with the triangle mesh and return intersection information

Parameters:
rRay

The ray(s) to use for the intersection test(s)

methodstr, optional

Tow choice -> ‘v2’ (use mainly pbrt v2 triangle intersection test method) or ‘v3’ (pbrt v3)

diag_calcbool, optional

Perform diagonal calculations between r(i) and triangle(i). The number of triangles must be equal to the number of rays

use_loopbool, optional

If True -> scalar calculations over a loop (instead of using numpy). It can be useful for debugging

ds_outputBool, optional

If True the output is a dataset, else return a tuple with intersection information variables

Returns:
outxr.Dataset | tuple

Look-up table with the intersection information if ds_output is True, else return a tuple (ready to be an input for the function get_intersect_dataset in geoclide/shapes.py). Form of the tuple:

  • shape_namestr

    -> The shape class name

  • rRay

    -> The ray(s) used for the intersection test

  • tNone | float | 1-D ndarray

    -> The t ray variable(s) for its first intersection at the shape surface

  • is_intersectionbool | 1-D ndarray

    -> If there is an intersection return True, else False

  • uNone | float | 1-D ndarray

    -> The u coordinate(s) of the parametric representation

  • vNone | float | 1-D ndarray

    -> The u coordinate(s) of the parametric representation

  • dpduNone | 1-D ndarray | 2-D ndarray

    -> The surface partial derivative(s) of phit with respect to u

  • dpdvNone | 1-D ndarray | 2-D ndarray

    -> The surface partial derivative(s) of phit with respect to v

  • diag_calbool

    -> This indicates whether a diagonal calculation has been performed

is_intersection(r, method='v3', diag_calc=False, use_loop=False)#

Test if a ray/set of rays intersect with the triangle mesh

Parameters:
rRay

The ray(s) to use for the intersection test(s)

methodstr, optional

Tow choice -> ‘v2’ (use mainly pbrt v2 triangle intersection test method) or ‘v3’ (pbrt v3)

diag_calcbool, optional

Perform diagonal calculations between r(i) and triangle(i). The number of triangles must be equal to the number of rays

use_loopbool, optional

If True -> scalar calculations over a loop (instead of using numpy). It can be useful for debugging

Returns:
outbool | 1-D ndarray

If there is an intersection -> True, else False

is_intersection_t(r, method='v3', diag_calc=False, use_loop=False)#

Test if a ray/set of rays intersect with the triangle mesh

Parameters:
rRay

The ray(s) to use for the intersection test(s)

methodstr, optional

Tow choice -> ‘v2’ (use mainly pbrt v2 triangle intersection test method) or ‘v3’ (pbrt v3)

diag_calcbool, optional

Perform diagonal calculations between r(i) and triangle(i). The number of triangles must be equal to the number of rays

use_loopbool, optional

If True -> scalar calculations over a loop (instead of using numpy). It can be useful for debugging

Returns:
thitNone | float | 1-D ndarray

The t ray variable(s) for its first intersection at the shape surface

is_intersectionbool | 1-D ndarray

If there is an intersection -> True, else False

Notes

If use_loop = True, is_intersection_t can be significantly more consuming than is_intersection. Because it does not stop at the first intersection, but it finalize the complete loop to return the thit corresponding to the nearest triangle.

plot(source=None, savefig_name=None, **kwargs)#

Plot the triangle mesh

Parameters:
sourcestr

The package used for the plot, only 2 option -> ‘matplotlib’ or ‘trimesh’. If source = None, use matplolib for mesh with ntriangle < 5000, else use trimesh

savefig_namestr, optional

If savefig_name is given, the figure is saved with the given name (only if source=’matplotlib)

**kwargs

All other keyword arguments are passed on to matplotlib plot_trisurf function. For example: alpha, color, shade, … If source = ‘trimesh’ then the keyword arguments passed on to show Trimesh method

Examples

>>> import geoclide as gc
>>> prolate = gc.Spheroid(radius_xy=1.5, radius_z=3.)
>>> msh = prolate.to_trianglemesh()
>>> msh.plot(color='green', edgecolor='k')
image
to_dataset(name='none')#

Create an xarray dataset where the triangle mesh information are stored

Parameters:
namestr, optional

The name of the triangle mesh to be stored

Returns:
outxr.Dataset

The dataset with the triangle mesh information

write(path, **kwargs)#

Save the mesh

  • if gcnc format use xarray, else use trimesh

Parameters:
pathstr

The xarray to_netcdf path paramter (or trimesh)

**kwargs

The keyword arguments are passed on to xarray to_netcdf or trimesh export method

geoclide.trianglemesh.read_gcnc_trianglemesh(path, **kwargs)#

Read geoclide netcdf4 format and convert it to a TriangleMesh class object

Parameters:
pathstr

The xarray filename_or_obj parameter

**kwargs

The keyword arguments are passed on to xarray open_dataset method

Returns:
outTriangleMesh

The triangle mesh

geoclide.trianglemesh.read_trianglemesh(path, **kwargs)#

Open mesh file

  • if gcnc format use xarray, else use trimesh

Parameters:
pathstr

The xarray filename_or_obj or trimesh file_obj parameter

**kwargs

The keyword arguments are passed on to xarray open_dataset or trimesh load method

Returns:
outTriangleMesh

The triangle mesh