geoclide.transform module#
- class geoclide.transform.Transform(m=None, mInv=None)#
Bases:
object
Represents 3D geometric transformation(s) using a 4x4 matrix or ntx4x4 matrix, where nT is the number of transformations
It allows translation, rotation and scalling. It can be applied to vectors, points, normals and rays
- Parameters:
- mTransform | 2-D ndarray | 3-D ndarray, optional
The matrix of the transformation(s)
- mInvTransform | 2-D ndarray | 3-D ndarray, optional
The inverse matrix of the transformation(s)
Methods
__call__
(c[, diag_calc, flatten])Apply the transformations
inverse
()Inverse the transformation(s) matrix
rotate
(angle, axis[, diag_calc])Update the self transformation(s) by adding a rotate transformation(s)
rotateX
(angle)Update the self transformation(s) by adding a rotateX transformation(s)
rotateY
(angle)Update the self transformation(s) by adding a rotateY transformation(s)
rotateZ
(angle)Update the self transformation(s) by adding a rotateZ transformation(s)
scale
(v)Update the self transformation(s) by adding a scale transformation(s)
translate
(v)Update the self transformation(s) by adding a translate transformation(s)
is_identity
Examples
>>> import geoclide as gc >>> t1 = gc.Transform() >>> t1 m= array( [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] ) mInv= array( [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] )
- __call__(c, diag_calc=False, flatten=False)#
Apply the transformations
- Parameters:
- cVector | Point | Normal | Ray | BBox
The vector(s)/point(s)/normal(s)/ray(s)/bounding box(es) to which the transformation is applied
- diag_calcbool, optional
Perform diagonal calculations between c(i) and tranformation(i). The number of transformations must be equal to the number of vectors/points/ …
- Returns:
- outVector | Point | Normal | Ray | BBox | 1-D array
The vector(s)/point(s)/normal(s)/ray(s)/bounding box(es) after the application of the transformation(s). In case of several transformations, it returns a 1-D ndarray of dtype equals to the c parameter type, but if flatten is True returns directly an object of same type as the c parameter.
Examples
>>> import geoclide as gc >>> t = gc.get_translate_tf(gc.Vector(5., 5., 5.)) >>> p = gc.Point(0., 0., 0.) >>> t[p] Point(5.0, 5.0, 5.0)
- inverse()#
Inverse the transformation(s) matrix
- Parameters:
- tTransform
The transformation(s) to be inversed
- Returns:
- outTransform
The inversed transformation(s)
- is_identity()#
- rotate(angle, axis, diag_calc=False)#
Update the self transformation(s) by adding a rotate transformation(s)
Warning
The angle parameter can be a 1-D array only if axis parameter is a Vector/Normal with scalar x, y, z components, or if the parameter diag_calc=True
- Parameters:
- anglefloat | 1-D ndarray
The angle(s) in degrees for the rotation(s)
- axisVector | Normal
The rotation(s) is/are performed around the vector(s)/normal(s) axis/axes
- diag_calcbool, optional
Perform diagonal calculations in case angle is a 1-D ndarray and axis is a Vector/Normal with 1-D ndarray x, y, z components. Use angle(i) with axis(i) to calculate transformation(i)
- Returns:
- tTransform
The product of the self transformation(s) and the rotate transformation(s) matrices
- rotateX(angle)#
Update the self transformation(s) by adding a rotateX transformation(s)
- Parameters:
- anglefloat | 1-D ndarray
The angle(s) in degrees for the rotation(s) around the x axis
- Returns:
- tTransform
The product of the self transformation(s) and the rotateX transformation(s) matrices
- rotateY(angle)#
Update the self transformation(s) by adding a rotateY transformation(s)
- Parameters:
- anglefloat | 1-D ndarray
The angle(s) in degrees for the rotation(s) around the y axis
- Returns:
- tTransform
The product of the self transformation(s) and the rotateY transformation(s) matrices
- rotateZ(angle)#
Update the self transformation(s) by adding a rotateZ transformation(s)
- Parameters:
- anglefloat | 1-D ndarray
The angle(s) in degrees for the rotation(s) around the Z axis
- Returns:
- tTransform
The product of the initial transformation(s) and the rotateZ transformation(s) matrices
- scale(v)#
Update the self transformation(s) by adding a scale transformation(s)
- Parameters:
- vVector
The vector(s) used for scale transformation(s)
- Returns:
- tTransform
The product of the self transformation(s) and the scale transformation(s) matrices
- translate(v)#
Update the self transformation(s) by adding a translate transformation(s)
- Parameters:
- vVector
The vector(s) used for the transformation(s)
- Returns:
- tTransform
The product of the self transformation(s) and the translate transformation(s)
Examples
>>> import geoclide as gc >>> t = Transform() >>> t = t.translate(gc.Vector(5.,0.,0.)) >>> t m= array( [[1. 0. 0. 5.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] ) mInv= array( [[ 1. 0. 0. -5.] [ 0. 1. 0. 0.] [ 0. 0. 1. 0.] [ 0. 0. 0. 1.]] )
- geoclide.transform.get_inverse_tf(t)#
Get the inverse transformation(s)
- Parameters:
- tTransform
The transformation(s) to be inversed
- Returns:
- outTransform
The inversed transformation(s)
- geoclide.transform.get_rotateX_tf(angle)#
Get the rotateX transformation(s)
- Parameters:
- anglefloat | 1-D ndarray
The angle(s) in degrees for the rotation(s) around the x axis
- Returns:
- tTransform
The rotateX transformation(s)
- geoclide.transform.get_rotateY_tf(angle)#
Get the rotateY transformation(s)
- Parameters:
- anglefloat | 1-D ndarray
The angle(s) in degrees for the rotation(s) around the y axis
- Returns:
- tTransform
The rotateY transformation(s)
- geoclide.transform.get_rotateZ_tf(angle)#
Get the rotateZ transformation(s)
- Parameters:
- anglefloat | 1-D ndarray
The angle(s) in degrees for the rotation(s) around the Z axis
- Returns:
- tTransform
The rotateZ transformation(s)
- geoclide.transform.get_rotate_tf(angle, axis, diag_calc=False)#
Get the rotate transformation(s) around a given axis/axes
Warning
The angle parameter can be a 1-D array only if axis parameter is a Vector/Normal with scalar x, y, z components, or if the parameter diag_calc=True
- Parameters:
- anglefloat | 1-D ndarray
The angle(s) in degrees for the rotation(s)
- axisVector | Normal
The rotation(s) is/are performed around the vector(s)/normal(s) axis/axes
- diag_calcbool, optional
Perform diagonal calculations in case angle is a 1-D ndarray and axis is a Vector/Normal with 1-D ndarray x, y, z components. Use angle(i) with axis(i) to calculate transformation(i)
- Returns:
- tTransform
The rotate transformation(s)
- geoclide.transform.get_scale_tf(v)#
Get the scale transformation(s)
- Parameters:
- vVector
The vector(s) used for scale transformation(s)
- Returns:
- tTransform
The scale transformation(s)
- geoclide.transform.get_translate_tf(v)#
Get the translate transformation(s)
- Parameters:
- vVector
The vector(s) used for the translate transformation(s)
- Returns:
- tTransform
The translate transformation(s)
Examples
>>> import geoclide as gc >>> t = gc.get_translate_tf(gc.Vector(5.,0.,0.)) >>> t m= array( [[1. 0. 0. 5.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] ) mInv= array( [[ 1. 0. 0. -5.] [ 0. 1. 0. -0.] [ 0. 0. 1. -0.] [ 0. 0. 0. 1.]] )