geoclide.vecope module#

geoclide.vecope.coordinate_system(v1, method='m2')#

Create orthogonal coordinate system(s) from a vector/set of vectors

Parameters:
v1Vector

The base vector(s) used to create the orthogonal coordinate system(s)

method: str, optional

Default is ‘m2’ (method from pbrt v4), other choice is ‘m1’ (pbrt v2 and v3)

Returns:
v2Vector

The second vector(s) of the orthogonal coordinate system(s)

v3Vector

The third vector(s) of the orthogonal coordinate system(s)

Examples

>>> import geoclide as gc
>>> v1 = gc.Vector(0., 0., 1.)
>>> v2, v3 = gc.coordinate_system(v1)
(Vector(1.0, -0.0, -0.0), Vector(-0.0, 1.0, -0.0))
geoclide.vecope.cross(a, b)#

The cross product

  • Warning

    The cross product of 2 normals is not allowed

Definition of the cross product:

  • \((a × b) = ((a.y*b.z)-(a.z*b.y))x̂ + ((a.z*b.x)-(a.x*b.z))ŷ + ((a.x*b.y)-(a.y*b.x))\)

  • \((a × b) = ||a||*||b||*sin(θ)\)

    where x̂, ŷ and ẑ are the unitary vectors respectively in axes x, y and z

Parameters:
aVector | Normal

The first vector(s) or normal(s) used for the cross product

bVector | Normal

The second vector(s) or normal(s) used for the cross product

Returns:
outVector

The result(s) of the cross product

Examples

>>> import geoclide as gc
>>> a = gc.Vector(0.,0.,1.)
>>> b = gc.Vector(1.,0.,0.)
>>> gc.cross(a,b)
Vector(0.0, 1.0, 0.0)
geoclide.vecope.distance(p1, p2)#

Compute the distance(s) between 2 points/set of points

Parameters:
p1Point

The first point(s)

p2Point

The second point(s)

Returns:
outfloat | 1-D ndarray

The distance(s) between the 2 points/set of points

Examples

>>> p1 = gc.Point(0., 0., 0.)
>>> p2 = gc.Point(0., 0., 10.)
>>> gc.distance(p1,p2)
10.0
>>> p1 = gc.Point(1., 2., 1.9)
>>> p2 = gc.Point(5., 15., 3.)
>>> gc.distance(p1,p2)
13.64587849865299
geoclide.vecope.dot(a, b)#

The dot/scalar product

Definition of the dot product:

  • \((a . b) = a.x*b.x + a.y*b.y + a.z*b.z\)

  • \((a . b) = ||a|| * ||b|| * cos(θ)\)

Parameters:
aVector | Normal

The first vector(s) or normal(s) used for the dot product

bVector | Normal

The second vector(s) or normal(s) used for the dot product

Returns:
outfloat | 1-D ndarray

The result(s) of the dot product i.e. sum of products

Examples

>>> import geoclide as gc
>>> a = gc.Vector(0., 0., 1.)
>>> b = gc.Vector(math.sqrt(2.)/2., 0., math.sqrt(2.)/2.)
>>> gc.dot(a,b)
0.7071067811865476
geoclide.vecope.face_forward(a, b)#

Flip the vector(s)/normal(s) a if the vector(s)/normal(s) b is/are in the opposite direction(s)

It can be useful to flip a surface normal so that it lies in the same hemisphere as a given vector.

Parameters:
aVector | Normal

The vector(s) or normal(s) to potentially flip

bVector | Normal

The base vector(s) or normal(s) used for the flip

Returns:
outVector | Normal

The potentially flipped vector(s) or normal(s)

Examples

>>> import geoclide as gc
>>> n1 = gc.Normal(1., 0., 0.)
>>> v1 = gc.Vector(-1., 0., 0.)
>>> gc.face_forward(v1, n1)
Vector(1.0, -0.0, -0.0)
geoclide.vecope.normalize(v)#

Normalize a vector/normal or a set of vectors/normals

Parameters:
vVector | Normal

The vector(s) or normal(s) to be normalized

Returns:
outVector | Normal

The normalized vector(s)/normal(s)

Examples

>>> import geoclide as gc
>>> v = gc.Vector(1.,0.,1.)
>>> gc.normalize(v)
Vector(0.7071067811865475, 0.0, 0.7071067811865475)
geoclide.vecope.permute(a, ix=None, iy=None, iz=None)#

Permutes the vector(s)/point(s)/normal(s) x, y, z values according to the given indices

Parameters:
aVector | Point | Normal

The vector(s), point(s) or normal(s) used for permutation

ixint | np.ndarray | list, optional

The index/indices of the value(s) we want to keep as a remplacement for the x component(s)

iyint | np.ndarray | list, optional

The index/indices of the value(s) we want to keep as a remplacement for the y component(s)

izint | np.ndarray | list, optional

The index/indices of the value(s) we want to keep as a remplacement for the z component(s)

Returns:
outVector | Point | Normal

The vector(s)/point(s)/normal(s) after the permute operation

Examples

>>> import geoclide as gc
>>> v1 = gc.Vector(2., 3., 1.)
>>> gc.permute(v1, 1, 0, 2)
Vector(3.0, 2.0, 1.0)
>>> gc.permute(v1, 1, 0, 2])
Vector(3.0, 2.0, 1.0)
>>> p_set = np.array([[0.,0.,3.], [1.,0.,0.], [-0.5,0.,0.], [0.,-3.,0.]])
>>> p_set = gc.Point(p_set)
>>> gc.permute(p_set, [2,0,0,1], 1, 2).to_numpy()
array([[ 3. ,  0. ,  3. ],
       [ 1. ,  0. ,  0. ],
       [-0.5,  0. ,  0. ],
       [ 0. , -3. ,  0. ]])
geoclide.vecope.vabs(a)#

Calculate the absolute value(s) of each component of the vector(s)/point(s)/normal(s)

Parameters:
aVector | Point | Normal

The vector(s)/point(s)/normal(s) used

Returns:
out: Vector | Point | Normal | 1-D ndarray

The vector(s)/point(s)/normal(s) with absolute values

geoclide.vecope.vargmax(a)#

Get the index/indices of the vector(s)/point(s)/normal(s) components with the largest value(s)

Parameters:
aVector | Point | Normal

The vector(s)/point(s)/normal(s) used

Returns:
out: int | 1-D ndarray

The index/indices of the largest vector(s)/point(s)/normal(s) value(s)

Examples

>>> import geoclide as gc
>>> v1 = gc.Vector(2.,3.,1.)
>>> gc.argmax(v1)
1
geoclide.vecope.vargmin(a)#

Get the index/indices of the vector(s)/point(s)/normal(s) components with the smallest value(s)

Parameters:
aVector | Point | Normal

The vector(s)/point(s)/normal(s) used

Returns:
out: int | 1-D ndarray

The index/indices of the smallest vector(s)/point(s)/normal(s) value(s)

Examples

>>> import geoclide as gc
>>> v1 = gc.Vector(2.,3.,1.)
>>> gc.argmin(v1)
2
geoclide.vecope.vmax(a)#

Get the largest components value(s) of the vector(s)/point(s)/normal(s)

Parameters:
aVector | Point | Normal

The vector(s)/point(s)/normal(s) used

Returns:
out: float | 1-D ndarray

The largest vector(s)/point(s)/normal(s) value(s)

Examples

>>> import geoclide as gc
>>> v1 = gc.Vector(2.,3.,1.)
>>> gc.max(v1)
3
geoclide.vecope.vmin(a)#

Get the smallest components value(s) of the vector(s)/point(s)/normal(s)

Parameters:
aVector | Point | Normal

The vector(s)/point(s)/normal(s) used

Returns:
out: float | 1-D ndarray

The smallest vector(s)/point(s)/normal(s) value(s)

Examples

>>> import geoclide as gc
>>> v1 = gc.Vector(2.,3.,1.)
>>> gc.min(v1)
1